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P

u=(u,v,w)
w=curlu
X=(XY,2)
0=(0,0,-9.81)

Yi

Nomenclature

density (kg/m?®)

velocity (m/s)

vorticity (1/s)

position (m)

acceleration of gravity (m/s?)
temperature (°C or K)

mass fraction of ith species

mixture fraction

diffusion coefficient of ith species (m?/s)
production rate of ith species (kg/m?3/s)
pressure (Pa or atm)

dynamic viscosity (kg/ms)

kinematic viscosity (m?/s)

thermal conductivity (J/m s K)

specific heat, constant pressure (J/kg K)
specific heat, constant volume (J/kg K)
gas constant (J/kg K)

ratio of specific heats

internal energy per unit mass (J/kg)
total energy per unit mass (J/kg)
enthalpy (J/kg)

heat source (W/m?)



Notation

Gradient of a scalar field @(x,y, 2)

0 0@ 0
grad ¢= o= (a—cxp a_(sf’ a—cﬁ)

Dot Product of two vectors f = (fy, f,, f3) and g = (01, 92, ga)
f-g= f101+ f202 + f303

Velocity magnitude
uP=u-u=u+vV+w

Divergence of Velocity
ou ov ow

dIVUED-UIa—X—i—@—FE

Curl of Velocity (Vorticity)

curlu=Oxuzce (W_0vou_owov du
- \ey az7oz ax'ax  ay

)



Second Rank Tensor

T=Tj = (

Tensor Divergence

O (uu) =div (uu) = (

T11 T12 Ta3
To1 To2 To3
T31 T332 T33

ou? OJuv OJuw

ax'+'6y + oz '



Conservation of Mass

Fixed Control Volume Q

7 0 Boundary denoted by 0Q
-

X OX oy

Assume that the average density within Q is p¢(t). The mass contained within Q is then
Pc OXOydz. The mass flowing in from the right (east) is —UpPe0ydz, the mass from the left

(west) is uypw Oydz, the mass from the back (north) is —vnpn 0xdz, etc. Conservation of
mass is expressed

% OXOYOZ = —UePe OY OZ+ UyPw OY OZ — VnPn OXOZ -+

Multiplying and dividing the terms on the RHS by 0%, dy and &z, respectively, yields

dpc __ UePe — UwPw ~ VnPn —VsPs ~ WiPt — WhPb
It OXOydz = S OX Oy &z 5 OX Oy &z = OX Oy &z



More formally, the integral form of the Mass Conservation Equation is

d
&/pdv_—/pu-ds
Q 0Q

where dV = dxdydzand dS= ndA. Using the Divergence Theorem

/D-FdV:/F-dS
Q 0Q

the integral form can be written

op B
/Edv_—/D-pudV
Q Q

and the control volume can be made infinitesimally small, yielding

op
E+D-pu—0

the conservation form of the equation. Introducing the material derivative
D() _a()
= u-
ot ot TUHO
the equation can be written in “non-conservative form”

Dp B
E‘FP(D-U)—O




Note that if the density does not change, then - u = 0 and the fluid is incompressible.

For future reference, note that for a given scalar quantity @(x,y,zt)

opQ _ Do
ot +0 pucp_th

because of the mass conservation equation. It is often convenient to write the transport
equations in either of these forms.



Conservation of Species

If the fluid consists of a mixture of species, it is necessary to solve transport equations for
each species. These equations have the form

opY; .
%+D-pviu = 0. pDi0OY; +W"
where Y; is the mass fraction of the ith species, D; is the diffusion coefficient of species
| into the mixture, and W is the production rate of the species i. The constraint on the

equations is that

N

iiYi:l ; iipDiDYi:o ; i;)WI/H:O

where there are N + 1 species in the mixture. Summing all the species equations together
yields the mass conservation equation. Thus, one can solve N + 1 species equations or
N species equations plus the mass conservation equation.



Conservation of Momentum

This is Newton’s Second Law of Motion (Force = Mass x Acceleration). Consider the
component of momentum in the x-direction, pu

%/pudw/puu.dSZ/—pi-ds+/(T.i).ds
Q 0Q 0Q 0Q

where i is the unit vector in the x direction and the viscous stress tensor of a Newtonian
fluid is given as
oup du; 2_ Ouy 1 i=]j
I=T: = I s ISR T : )
| “(axj+a>q 37 o L0 i#]

d 0 0 d 0
% BEE BEN L, 0u 0 o
T=p| H+tx 2 sty —3H 0O Owu O
Uy ow v ow  How 0 0 U-u
_ 0z Qx 0z ay_ 0z
As with the mass conservation equation, the control volume can be shrunk to zero, and
the resulting equation is

or

Jdpu

T‘FD'QUU:—D-pi—FD'(T-i)
After expansion of the terms the equation is
dpu N opu? N dpuv dpuw  dp
ot ox dy 0z  0x

+ 2 g 2%_6_\/_6_\,\/ _|_3 %4_0_\/ _|_2 @_Falv
0X 3u oXx 0y o0z ay H dy 0Xx 0z H 0z 0x



If the fluid is incompressible and the coefficient of viscosity is constant, this equation
simplifies

Pop =P +v o HHOu

Du au au @+w@ _op
ot Yax dy 0z) 0

The vector form of the momentum equation is

d(pu)
ot

+0-puu=—-Up+pg+0L-1

or in non-conservation form

Du
pﬁt = —Up+pg+0-1

mass . force
x acceleration =
volume volume




Conservation of Energy

This is the First Law of Thermodynamics (Increase in energy of the control volume Q is
equal to the heat added minus the work done by expansion).

N
%/pEdV + /pEU-dS:/qde—l-_Z)/hipDiDYi'dS
Q 30 Q =00

4 /kDT-dS+/—pu-dS+/(T-u)-dS+/pg-udV—/qr-dS
0Q 0Q 0Q Q 0Q

where E = e+ |u[?/2 (internal + kinetic energy per unit mass). Rewrite in difference form:

2 N
p%‘f —~ pg—te + p%‘t/z) = Q’”+i;D -hipDi[IY;
+ 0O-kOT-0-pu+0-(t-u)4+pg-u—0-q;
Using the momentum conservation equation
D(|u?/2) _ Du
Dt "Dt
write the energy equation as

-u=-0p-u+pg-u+(0-1)-u

P

N
pg—f+ p(H-u)=q"+ Z)D'hipDiDYi+D-kDT+¢—D'CIr
i=



where

ou\ ov\ 2 ow\ 2
ov ouN faw Ov\® (o ow\? 2 (u v ow\®
ox oy dy 0z 0z 0Xx 3\0x o0y o0z

Use the definition of enthalpy h = e+ p/p and rewrite

Dh Dp

N
— — — =q"+ Z)D-hipDiD\(i+D-kDT+¢—D-qr
Dt Dt =




Equation of State

The gas can be assumed a Perfect Gas

p=RpT _iYi/Mi

Assuming that the specific heat of each species is independent of temperature, kinetic
theory yields

o L2tV v R
P2 M v — 1M
where vj is the number of internal degrees of freedom of the molecules of the ith species.

For diatomic molecules, v =5 and y= cp/c, = 7/5. Assuming all molecules in the mixture
are diatomic and using the fact that the enthalpy of the mixture can be written

N N
"= i;)hiYi B Ti;}cpm

the Equation of State can be simplified




Basic Conservation Equations for Single Species

Conservation of Mass

op
E+D°DU—O

Conservation of Momentum

d(pu
—(gt ) +0U-puu=—-Up+pg+U-1
Conservation of Energy
o(ph) _Dp,
T+D-phu_ Dt +q"+0-kOT
Equation of State
p=RpT

What are the unknowns? Density p; Velocity Components u, v, w; Enthalpy h, Pressure p

What needs to be provided? (", the fire; 1, the (turbulent) viscous stresses, O-kOT,
thermal conductivity



Low Mach Number Form of Navier-Stokes Equations (Rehm and Baum)

Decompose pressure into average background pressure plus the hydrodynamic pressure
plus a perturbation

P(X,Y,Zt) = Po— PxO(Z— 20) + P(X, Y, Z 1)

Mass Conservation

op B
E+D-pu_0

Momentum Conservation

_a(gtu) +0-puu=—-0p+ (P—Pw)g+0-1

Pressure Equation (Divergence of Momentum Equation)

D-@:—G(D'u) el D-u:y;l
P ot Y Po

(6" +0-kOT)

Equation of State
Po = RpT



Finite Difference Approximations
Recall from Calculus the Taylor series expansion of a function of one variable:

B df(x) ox?d?f(x) ox" d"f (x)
f(X+&x) = f(X) + Ox ax +2! 0l + .. +n! v

The Taylor series expansion can be applied to a function of more than one independent
variable. Consider a function of one time and one space variable:

ou ot2 0%u

O(6Xn+1)

Time (xt+6t)—u(xt)+6ta (0 +—= 62( t) + O(8t%)
ou &x? 0%u
Space u(x+ ox,t) = u(x,t)+6xa—x(x,t)+ > 3% 2( t) + 0(5x%°)

Assume u(x,t) defined over the region 0 < x <L and 0 <t <. Divide the interval [O,L]
into | uniformly spaced cells of length & =L /I, and let u = u(idx,ndt) where &t is the size
of a time step. Now the above expressions become

ou\" a2 /92u\"
; n+1 __ 3
Time u" "t =u'+ ot (at) + > <—6t2)i + O(ot”)
ou\" &2 [0%u\"
Space u' g = u'+ 0x (ax)i +7 (W) + 0(%%)

which can be used to make approximations of partial derivatives, for example

ou\" uM
(E)i = W o



ul, ., —ul

i+126X|—1+O<5X2)

oy §£+u{‘_1+0(5xz)

Uil o ZUI+§;SUI 1~ Ul 0(52)
I+2+8u|1126)(8un Ful, L o)

3u'—-4u’  +u’, N

2
o O(0x7)




Model Problem: Burgers Equation

Consider the PDE
ou oJu 024U
E + ua—x = VW (1)

where u(x,t) is defined for 0 < x < 1 with initial conditions
u(x,0) = f(x)
and boundary conditions
uo,t)=1 ; u(Lt)=0
How does one solve this problem numerically?

Step 1. Divide the interval [0,1] into | uniformly spaced cells of length dx = 1/1, and let
u = u(idx,ndt) where &t is the size of a time step.

Step 2. Choose a discretization of Eq. (1) at each node i. One of the simplest discretiza-
tions is
n+1

Ui

—uf v Ul —2ut+ul g
ot 20X OX2

with initial condition u® = f; and boundary conditions uj = 1 and ul = 0.

n n
Ui — U4 _

+uf

Step 3. Compute

ul ., —ul” u' , —2u+u”
u_n+1:uin_6t u" 1+1 [ 1—V I+1 | -1

! ' 20X OX2




N O NNk~ OO @ O W

o NN A~ O 0 O W

[teration n = O
Time Step 6t =0.050
Number of Nodes [ = 20

Viscous Coefficient v = 0.05
0 2 4 .6 8 1
X
[teration n = 1
Time Step 6t =0.050
Number of Nodes [ = 20
Viscous Coefficient v = 0.05
0 2 4 .6 8 1



N O NNk~ OO @ O W

[teration n = 2
Time Step 6t =0.050
Number of Nodes [ = 20

Viscous Coefficient v = 0.05
0 2 4 .6 8 1
X

.2
.0
.8+
.6 F

- [teration n = 3
-4 | Time Step 6t =0.050
2t Number of Nodes I = 20
0 Viscous Coefficient v = 0.05
LR :

0 2 4 .6 8 1



N O NNk~ OO @ O W

[teration n = 4
Time Step 6t =0.050
Number of Nodes [ =

Viscous Coefficient v

20
= 0.05

O

1.

o NN A~ O 0 O W

N

[teration n = 5
Time Step 6t =0.050
Number of Nodes I =

Viscous Coefficient v

= 0.05

1.




OO NNk~ OO0 @ O W

[teration/n = 6
Time St ot =0.050
Number of Nodes [ =

Viscous Coefficient v

20

0.05

O

1.

o NN~ O O W

[teration n|= |7
Time| Step ot +0.050
Nu er of Nodes I =

Viscipus Coefficient v

20

0.05

(@)

1.




What happened? To find out, ask what equation is really being solved.

ou du (v B uzét) 0°u  udx? <3v6t udt 1) a3u

at T Yax 2 )T 3 \52 ox 2/

To avoid disaster, the time step size needs to be restricted according to

X2 2V
ot < — d o< —
< > an < T

More often, these restrictions are written

2
5t <2 and st< ™
2V u
and they apply to alot of different schemes. The second restriction is known as the CFL

condition (Courant, Friedrichs, Lewy, 1928).
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[teration n = O
Time Step 6t =0.020

Number of Nodes [ = 20
Viscous Coefficient v = 0.05
0 .2 1.
.2
.0
.8+
.6 F
- [teration n = 1
-4 | Time Step 6t =0.020
2t Number of Nodes I = 20
0 Viscous Coefficient v = 0.05
LR :
0 R 1.
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[teration n = 28
Time Step 6t =0.020

Number of Nodes [ = 20

Viscous Coefficient v =

0.05

O

1.

)
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[teration n = 29
Time Step 6t =0.020

Number of Nodes [ = 20

Viscous Coefficient v =

0.05

®)

1.
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[teration n = 58
. Time Step 6t =0.020
- Number of Nodes I = 20
i Viscous Coefficient v = 0.05
0 L2 4
X
[teration n = 59
| Time Step 6t =0.020
- Number of Nodes I = 20
i Viscous Coefficient v = 0.05
0 s A 1.
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o NN~ O O W

[teration n = 88

. Time Step 6t =0.020

- Number of Nodes I = 20

i Viscous Coefficient v = 0.05

0 LR - .6

X

[teration n = 89

| Time Step 6t =0.020

- Number of Nodes I = 20

i Viscous Coefficient v = 0.05

0 R A .6 1.




An alternative discretization scheme is

Ut —up n uinuin —ul, _ Vuin+1 —2u'+u
ot OX Ox2
with the same initial and boundary conditions as before. The equation that is being solved
now is
au+u6u_ v 1Jru€'>x u? &t @‘I—
ot ox 2V 2 |oxz T
As long as
ot < 6—X
u

the scheme is stable. Unfortunately, the scheme is first order accurate in both space and
time, and it introduces too much viscosity for problems involving hot gases.



Lax’s Equivalence Theorem

A general rule of CFD is that

Consistency + Stabilty <= Convergence

If your scheme is consistent and stable, your solution will approach the exact solution as
you use a finer and finer grid. Unfortunately, for all but the simplest of 1D problems, you
are almost always limited by a grid of less than desirable resolution, especially for flows
in which the flow variables make sharp transitions (i.e. steep gradients). Consider our
model problem with less grid points:
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0]

[teration n = 42
Time Step 6t =0.095
Number of Nodes [ =

Viscous Coefficient v

10

0.05

0]

O

0]
O]
O]

[teration n = 43
Time Step 6t =0.095
Number of Nodes I =

Viscous Coefficient v

10

0.05

O]

O

O]
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1.
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[teration n = 28
Time Step 6t =0.095
Number of Nodes I = 5

Viscous Coefficient v = 0.05
0 .2
4/8\
D — 5
[teration n = 29
Time Step ot =0.095
Number of Nodes I = 5
Viscous Coefficient v = 0.05
0 R 1.




Scalings and the Reynolds Number
Consider the N-S Equations for incompressible flow:
Mass Conservation
O-u=0

Momentum Conservation

Du

— +0p=u0%

P Dt +LUPp=H

What are the unknowns? u, v, w, p

p, the density, and p, the dynamic viscosity, are constant. The equations can be non-
dimensionalized with the velocity scaled by U, lengths scaled by L, and time scaled by
L/U:

u=— =— ; tU'=—t ; xX=-,; 0O =L01
u P 7oz L L
The equations are rewritten
0*-u* = 0
Du” ~ L
pt- P oUL

The non-dimensional quantity pUL/u is called the Reynolds number. For air at room
temperature, p= 1.8 x 107> kg/(m s), p = 1.2 kg/m3. For a typical room fire scenario, flow
speeds are on the order of 10 m/s, length scales are on the order of 1-10 m. Thus, the
Reynolds numbers are on the order of 0.5 million to 10 million.



Reynolds Number Example

Consider the flow over an obstacle with a square cross section in an infinitely wide channel
for Reynolds numbers of 1, 10, 100, and 1000.

REYNOLDS NUMBER =1

REYNOLDS NUMBER = 100

REYNOLDS NUMBER = 1000




What's the problem with high Reynolds numbers? Consider again Burgers Equation, and
non-dimensionalize it

ou* +u*au* 1A
ot* ox* Re dx2
where u*(x*,t*) is defined for 0 < x* < 1 with initial conditions

u*(x*,0) = f(x)

and boundary conditions

uo,t")=1 ; ult’)=0
Physically, this equation approximates the flow of a fluid between two flat, parallel plates,
where x* is the spatial coordinate normal to the plate, normalized by half the distance
between the plates. The origin is the half-way point between the plates (x* = 0), and one
of the plates is at x* = 1. Only half the flow is being considered, the other half is a mirror
image. The velocity u* = 1 represents the free-stream velocity. If the channel is 1 m wide,
the free-stream velocity is U = 1 m/s, and the fluid is air, the Reynolds number (based on
U and a characteristic length of half the channel width L = 0.5 m) is 33,333. The governing
equation would be

ou*  ou* 0%u’

—=3x107"
G Y e

Recall the stability requirement for our simple central-difference numerical scheme

2(3x 10°5)
u*2

ot <



meaning that very small time steps will be needed to solve numerically, plus alot of grid
points will be needed to resolve the part of the flow field near the wall. For 2D and
3D problems with more complicated geometries and even higher Reynolds numbers, it's
impossible even with the fastest computers and better numerical schemes to “resolve”
this boundary layer. Worse yet, at these high Reynolds numbers, the boundary layer, and
the flow in general, will not be laminar, but rather turbulent. For very simple flows at low
Reynolds number, it is possible to do a Direct Numerical Simulation (DNS). For practical
problems, some form of turbulence model will have to be used.



Time-Averaging and Turbulence Modeling

Decompose the flow quantities u, v, w, p, etc. into a time-averaged component and a
fluctuating component

u(x,t) = t(x,t) +u'(x,t)

1 [t+At/2 q
u(x,t u(x,t)dt
u(x,t) = / o U0CD

At is assumed large compared to the period of the fluctuations, but small compared to the
characteristic time of the large scale motion. Note that

t-+At /2
x t) / =0
T At /2

but UV # 0. The turbulent kinetic energy is often denoted

where

é(u’u’+\/\/+v\/vx/)



Reynolds Equations for Turbulent Flows

Apply time-averaging procedure to the incompressible N-S Equations:

i/t+At/2<a(U+u’)+6(\7+\/)+6(V_V+V\/)) dt— 0

At Ji—at)2 0X oy 0z
becomes
Gu av ow _0
ax ay 9z

Thus, the mass conservation equation remains the same (because it is linear in u, v and
w). However, the momentum equations are not linear, and after much manipulation the
equations are rewritten

pDu op u<02n 92U 02u>_ (a(W)+a(u_\/) a(u'_W)>

X 0x2 T 0y?2 T 072 0X oy i 0z

Dv ap 02\7+62\7+62\7 B 6(\/—u’)+0(W) +a(W)
Pbt ay H & oy2 072 P ~ax oy 0z

Dw , 9p _ ll(azw 9%w aZV—v) (a(\W) a(W)+a(W)>

Pt az 0x2 + oy? * 072 0X * oy 0z



Modeling the Reynolds Stresses

The Reynolds form of the N-S Equations look alot like the original set derived above, but
now there is the inclusion of another stress tensor, called the Reynolds stresses

Du _ _
pﬁ — _DT)‘|‘ - (Tlam‘|‘Tturb)

where the turbulent stress tensor is denoted

—PUY —pUuV  —puw

Twp = —Pulj = | —pvu —pvV —pvw

—pwWu  —pwV —pww
What is —pTu’j? How shall these terms be modeled? The simplest approach is to say
0
N utan

where [, >> lis a constant “eddy viscosity”. The u component of the momentum equation
would then be

"
—pUiL|

Du op (GZU 0%u 02u) (azu 0%u OZU)

Por Tax Mo Tz T oz o2 oy a7

The “eddy viscosity” approach is regarded by many as overly simplistic, and a more com-
mon tubulence model (known as the k— & model) is

o W0 00\ 2o
U|UJ B P (an + aXi) 36IJ k




where |k is a non-constant turbulent viscosity and k is the tubulent kinetic energy %ﬂ By
dimensional analysis

2 2
HNk_ or Ezclk_
p € P €

where ¢ is the dissipation rate of energy. There is a need now for two transport equations

forkand ¢
Dk = [ (cz%Dk) +G—¢

Dt

De Lk £ g2
~° = 0.2 “G_c—
Dt (Cg > 8) + C4kG Cs K

N\ 2 o\ 2 oo\ 2
_ K |,(u v ow
@ = SR () (3

L[, ov\? (ou ow\® (ov 0w\’
dy 0Xx 0z 0X 0z oy

with the constants empirically derived

ct=009 ; ¢c=100 ; c3=0769 ; c4=144 ; c5=192



Large Eddy Simulation

Filter the flow quantities u, v, w, p, etc. as follows
U(x,t) = /G(x,x’) u(x’,t) dx’

As before UU # 0 and the momentum equation becomes
Du _ _
P—-=—0Op+0- (Tlam+ Tturb)

where now

Tjj turb = —P(UUj — T;T;)
Is the subgrid scale Reynolds stress. The simplest model of the subgrid scale Reynolds
stress is

_ _ 2, _
Tturb = Meurb (2 defu — §(D : u)I)

where | is the identity matrix and the deformation tensor is defined

ou 1(0u_ ov 1(0u_ ow
. o z(aﬁ&) 2\az T ax
defu=neonl=| i(5e5) 5 d(EE
1(0ow , du 1(ow , dv ow
z<ax+az> §<ay+a—z) o



The original Smagorinsky model for the viscous coefficient is

e — P (CA)? (2<def ) (defm) - 2( -U>2) 5

with Cs ~ 0.2 and A roughly the size of the grid cell. Recall the Dissipation Function from
the derivation of the energy equation

d = 1-0u = p(Z(defu)-(defu)—g(D-U)Z)

ou\ 2 v\ ow 2
- “lz(a—x) w2(5y) +2(5) +

ov ou\? faw v\® (ou ow\? 2 (0u v ow\?
ox oy dy 0z 0z 0X 3\0x o9y 0z



Numerical Method for Low Mach Number Navier-Stokes Equations

Conservation of Mass

op
T 1 0-pu=
R +0U-pu=0

Conservation of Species

0 )
5¢ (PYD) + - pYiu = O pDilIY; + W

Conservation of Momentum

d .
pa—l:+(u-D)u+Dp—pg:f+D-r
Conservation of Energy
a de /1
&(ph)JrD-phu = W—Fq —|—D-kDT—|—D-thiDiDYi—[|-qr
|

Equation of State

mmzmxz%



Assuming that the constant-pressure specific heat of the ith species ¢, is assumed to be
independent of temperature, the enthalpy can be written

hzzhiYi:TZCp,iYi
i |

Also, assuming that the ratio of specific heats y for each species is that of a diatomic
molecule, the specific heat is a function only of the molecular weight

_ (Y X
Cp’l_(V—l) M;

The state equation can be simplified

y—1
t)=——ph
Po(t) P
Taking the total (or material) derivative of the state equation yields an expression for the

divergence of the fluid

y_l " 1 de
+0-kOT +0- E hiD;0Y; — O - -
Y Po (q P qr) ypo dt

Integrating the divergence over the entire domain Q of volume V yields a consistency
condition for the background pressure po(t)

de y—1 /-/// / / ypO/
— = dv kKOT -dS hiD;L0Y; - dS— -dS|——-/ u-dS
dt \Y (Qq * 00 +,Z an' e aQq V' Ja

J.-u=



Simplified Momentum Equation
Using the vector identity

1
(u-Du zéDluyz—u X

the momentum equation is written

ou 1_ 1. p 1

To simplify this equation further, a substitution is made

f+0-1)

1 1
OH ~ Z0Oul?+=0p
SHIuP S0P

Now the momentum equation becomes

~

ou p 1

To obtain the pressure perturbation, we take the divergence of the momentum equation
ou
0- <E+F+Dﬂ> =0

where all the convective and diffusive terms have been incorporated in the term F. The
resulting equation for the total pressure # is an elliptic partial differential equation
d(0-u)

=
ot

1°H = —



The linear algebraic system arising from the discretization of this equation has constant
coefficients and can be solved to machine accuracy by a fast, direct (i.e. non-iterative)
method that utilizes fast Fourier transforms. No-flux boundary conditions are specified by
asserting that
ool _
on
at external boundaries and
o4 old Bun
“Ton &

at internal boundaries, assuring that the normal component of velocity u, will be driven
closer to zero according to

Fn —

ou
i



LES vs. DNS

The components of the viscous stress tensor are given by

T:u<2defu—§(D-u)l)

The viscous terms can be handled either by assuming a temperature-dependent dynamic

ViSCOSity
T\ 075
(f)

or the sub-grid scale stresses can be modeled following Smagorinsky where the viscosity
IS given

H=p(CsA)? (Z(def u)- (defu) — %(D ' U)Z)

where Cs is an empirical constant, A is a length on the order of the size of a grid cell, and
the deformation term is related to the Dissipation Function
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Time-Stepping
A simple way to iterate a differential equation for a function of time @(t)

do

.

with initial condition @(0)

Predictor step:
¢ =g +atf(g't")  t"=ndt

Corrector step:
ot
@ =@+ (@) + (" +30)
The corrector step can be rewritten:

1
@”:j@+@+&ﬂﬁﬂ+&ﬂ



Solution Procedure

1. The thermodynamic quantities p, Y;, and pg are estimated at the next time step with
an explicit Euler step. For example, the density is estimated

p(n+1)e _ pn _5t. pnun
The divergence (O-u)™ Ve is formed from these estimated thermodynamic quanti-
ties.

2. A Poisson equation for the pressure is solved with a direct solver

(0w — (O u)"
ot
Then the velocity is estimated at the next time step

u(™Le — y"— 5t (F"+ OH™)

O°H" = — _0O-.g"

3. The thermodynamic quantities p, Y;, and pp are corrected at the next time step. For
example, the density is corrected

ol % (pn 4+ pMHDe 5 0. p(n+1)eu(n+1)e)

The divergence (O-u)(™Y is derived from the corrected thermodynamic quantities.



4. The pressure is recomputed using estimated quantities

Z(D ) u>n-|-l _ (D ) u)(n—i—l)e _ (D X u)n
ot

23 (e — _ _ 0. gm+De

The velocity is then corrected

PO % [un Ly g (F(n+1)e 4 D}[(nﬂ)e”



Coordinate Transformations

The grid dimensions dx, dy and 0z can vary as functions of their respective spatial coordi-
nate, i.e.

_ds
e

df, df,

ﬁME;M=—WW1;M:&@&

OXi an



X-COORDINATE TRANSFORMATION Y-COORDINATE TRANSFORMATION

0 7/ ! ! ! | ! ! ! o ! ! ! !
Polynomial Stretch Piecewise Linear Stretch

&TRAN IDERIV=0,CC=0.75,PC=0.75 / &TRAN CC=0.30,PC=0.50 /
&TRAN IDERIV=1,CC=0.75,PC=0.50 / &TRAN CC=1.20,PC=1.00 /



Y -DIMENSION

\ \
.8 1.

X-DIMENSION




Spatial Differences

The density at the center of the ijkth cell is updated in time with the following predictor-
corrector scheme. In the predictor step, the density at the (n+ 1)st time level is estimated
based on information at the nth level

pn+1 pn
n
e o (u- Op)f = — P (O 0)f

Following the prediction of the velocity and background pressure at the (n+1)st time level,
the density is corrected

(n+1) 1 (n+1),
pljk -2 (pljk + pljk ) (n+1 (n+1 +1
%5’[ ( Dp)ljnk k= _pljrll( . ( u)fﬂ( )

The convective terms are written as upwind-biased differences in the predictor step and
downwind-biased differences in the corrector step. In the expressions to follow, the symbol
-+ means + in the predictor step and — in the corrector step. The opposite is true for .

1Fe,  Piryjk—Pijk  1Egy Pijk — Pi-1,jk
(u-Op)ixk = 5 Uijk 5x + 5 Ui—1,jk 5x +
1Fey,  Pijrik—Pijk  1xey Pijk — Pi,j—1k
Vii ) ) Vi ) b
5 Vil Sy + 5 Vij-1k Sy +
13F8ww__ Pij,k+1—pijk+1i8w . Pijk = Pij k-1

2 ik oz 2 Mik-1 oz



Note that without the inclusion of the ¢’s, these are simple central difference approxima-
tions. The €’'s are local CFL numbers, g, = udt/dx, &, = vdt/dy, and &, = wdt /dz, where
the velocity components are those that immediately follow. Their role is to bias the differ-
encing upwind. Where the local CFL number is near unity, the difference becomes nearly
fully upwinded. Where the local CFL number is much less than unity, the differencing is
more centralized.

The divergence in both the predictor and corrector step is discretized

y_'l /11 1 de
O-u)ii = —— o - kOT):: 0-T DY )i —
(0- Wik vOo <q|1k+( Jijk + Z( Cp,1PDLIY1 )iji v—1 ( dt
The thermal and material diffusion terms are pure central differences, with no upwind or
downwind bias, thus they are differenced the same way in both the predictor and corrector
steps

17 T—I—l,'k_T”k T"k—T'_]_?'k

1 Tijrik— Tik Tijk — Ti.j—1k
6y :kI,J—I—%,k 6y kl,j—%,k 6y +
1 K. 1TiJ',k+1—Tijk_ki_ ik = Tij k1

52_ Ikt3 0Z k=3 57

The temperature is extracted from the density via the equation of state
Po
PiikR. I o(iijk /M)

Tijk =



Combustion

Start with the most general form of the combustion reaction

V[:[F] —I—VO[O] — ZVP[P]

The numbers v; are the stoichoimetric coefficients for the overall reaction of fuel “F” and
oxygen “O” to produce products “P”. For example, ideal methane combustion is

CH;+20, - CO,+2 H,O

Assuming mass consumption rates of fuel and oxygen are related

" 1"
F_ O

VEME - VoMo

the mixture fraction Z is defined as:
SY:-—(Yo—Y, voM
7 F ( O o) . S oWwIo

SYISO —|—Y8° ’ N VEME
Z =1in the fuel stream, Z = 0 pure air, with Yo = Y3 ~ 0.23. Note for methane
2)(32
_(263 _,

(1)(16)



The mixture fraction satisfies the conservation law

S [ DY .
A ~“F 0. pDOYg W

1 D(Yo— Y)
serve |0 ot

=0-pDOYo —Y5) + 'c’)”]

DZ
— = U.pDUZ
th Y

obtained from a linear combination of the fuel and oxygen conservation equations.



The assumption that fuel and oxygen vanish at the infinitely thin flame sheet
__ Yo

SYE +Y5
yields the simplest state relation for oxygen as a function of Z

YE(1-2/Zr) Z<Z
Yo(Z)Z{oO( ) 257

This expression is known as the “state relation” for oxygen. It ties oxygen to the mixture
fraction.

Z(th) — ZF ; ZF
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What is the heat release rate per unit volume ¢q”'?

q/// — AHO Cl)//

Here, AHop is the heat release rate per unit mass of oxygen consumed (about 13,100
kJ/kg). The oxygen mass conservation equation

DY, .
thO = 0-pDOYo +WY

can be transformed into an expression for the local heat release rate using the conserva-
tion equation for the mixture fraction and the state relation for oxygen Yo(Z).
DYO dYo DZ . dYo dYO

Pt =Paz bt dz- PPH4 o PPHYo=pDimlz

Yielding:

- dYo dYo
—_— /// : . — —_— .
b =U (pD iz DZ) 4z - pDUZ

This expression for the local oxygen consumption rate is not particularly convenient to
apply numerically because of the discontinuity of the derivative of Yo(Z) at Z=2¢. A
better expression is the oxygen consumption rate per unit area of the flame sheet

g 9%
dZ |7 5,
In the numerical algorithm, the local heat release rate is computed by first locating the

flame sheet, then computing the local heat release rate per unit area, and finally distribut-
ing this energy to the grid cells cut by the flame sheet.

pD [Z-n




The total HRR is given by

Q:AHO/_"HC/)dA:AHo dﬁpD 0Z-dS
F F dZ
dYo_ 0.23

AHo~13100 kikgOz | —==———
F



Coarse Grid Considerations

Return to the transport equation for the mixture fraction in conservative form:
o(pZ
%ntm-puzz -pD0OZ
Integrating over the flaming volume
/ puZ-dS~ pDOZ-dS
B+F B+F
Rearrange terms

: Ye
(1—Z¢) = —/ pDOZ-dS ; (1-2Z¢) %AHO:AH
F
Suppose we choose a different value of Z-. We can still recover the desired HRR by
integrating over a “different” flame, Zgg, if

(%) ~ AH/AHo
dZ ), (1—2Ze)

What should we choose for Zg ¢ ? Empirically, it has been found that a good choice is
ZF e . D*
——=min{1,C—
Zr ( ’ 6X)

For “well-resolved” grids Zr ¢ = Z¢, but for less-resolved grids, Zre < Zr. The value of Zg e
will approach Z¢ is the fire grows.









Strengths of Mixture Fraction Approach

e Only one additional scalar convective/diffusion equation to solve
¢ Infinite rate combustion consistent with LES length and time scales

e Many product species can be expressed as functions of mixture fraction

Weaknesses of Mixture Fraction Approach

e Diffusion coefficient the same for all gas species
¢ Infinite rate kinetics, no support for detailed flame structure

e Fuel and oxygen always react eventually, regardless of temperature



Dimensional Analysis
Characteristic length scale for fire plume correlations:

D*_< Q )2/5 o9 o ()
PecCpTeoy /T ’ PeCpleoy/g D2 D

Where does this characteristic length come from? Consider the Energy Conservation
equation

DT .,
pCth =q +0-kOT +
Non-dimensionalize according to
X*=x/D" ; u=u/yvgD" ; t'=t/yD'/g ; P =p/ps ; T =T/Te

The Energy equation is now written in non-dimensional form

*

DT :
p* . q///* _|_ D . k*DT* _|_

Dt*
where
q///* — \ D* q///
PeCpTey/T
Integrating the local HRR over the entire domain
/q///* dv* — fq”/ dV —



What does this mean? Developers of engineering correlations for plumes and other fire-
driven flows built into the formulae nondimensional quantities allowing one to scale from
small to large fires. Since the correlations are derived from the equations of motion being
solved numerically, they retain this character. A single plume calculation can be scaled
for fires of about D* = 10 cm to fires of 10 m and beyond. As long as a sufficient number
of grid cells span D*, the major plume structures will be captured in the calculation. The
guality of the calculation is determined by

D*/&x

When D*/dx is relatively small, the surface Z = Zg shrinks closer to the burner surface
because of numerical diffusion of the fuel stream. It has been found empirically that a
good estimate of flame height can be found for crude grids if a different value of Z is used

to define the combustion region
ZFe . D>l<
——=min|1,C—
ZF ( ’ 6X>

As D*/dx increases, Zre — Zr.
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Finite-rate Combustion

In a DNS calculation, the diffusion of fuel and oxygen can be modeled directly, thus it is
possible to implement a single or multiple step chemical reaction. Consider the (single)
reaction of oxygen and a hydrocarbon fuel

VCH, CXHy + Vo, O, — Vco, CO,+ VH,0 H->O
The reaction rate is given by the expression

dt

Suggested values of B, E, a and b for various hydrocarbon fuels are given in the combus-
tion literature.

= —B[CiH, [0, E/RT






Strengths of Finite Rate Chemistry

e Closer to real physics
e Expandable to many steps and many intermediate species
e Real species transport properties can be used

e Temperature-dependent reaction rates allow for consideration of flame extinction

Weaknesses of Finite Rate Chemistry

e Costly to track many different species and compute reaction rates
e Uncertainties in reaction parameters

e Only useful in DNS calculations where resolution fine enough to capture real molec-
ular diffusion



Thermal Boundary Conditions
1. Adiabatic — No heat transfer through walls
2. Prescribed Temperature — Wall temperature is set by user

3. Thermally-Thin — Wall heats up according to its given density, specific heat and thick-
ness o
dis ., .
6psCsd_,[S :qg‘i'q;/
Individual values of ps, cs and & not as important as their product. This product may be
easier to determine experimentally rather than through measurements of each individual

term.

4. Thermally-Thick — One-dimensional heat conduction equation is applied in the direction
normal to the surface

0Ts 0°Ts 0Ts

PsCs = =kKs == ; —Ks=—
> ot Sanz San surface

where psis the density, cs the specific heat, and ks the conductivity of the material. Assume
wall has thickness 9. Divide wall up into N cells. Temperature in ith cell, Ts;, updated in
time with a Crank-Nicholson scheme

n+1 n n n n n+1 n+1 n+1
Ts,i _Ts,i o a ( si+1 2Ts,i +Ts,i—1 Ts,i+1_ 2Ts,i +Ts,i1>

S 2 2 i ¥

= Gc + &




where a = k/(psCs) and 1 <i < N. Boundary condition is discretized

To1—Teo .y .
—ks% =i+ — e

and wall temperature Ty = (Tso+ Ts1)/2.



Convective Heat Flux

(DNS) ¢! directly obtained by differencing the gas phase temperature values in the cells

adjacent to the boundary
oT Tn—T
kK in gas
e on on
where n is the directional coordinate pointing into the wall and on is the distance between

cell centers
(LES) g obtained from a correlation of the form

g = —C|AT|Y3AT W/m?

where AT = Tyan — Tgas is the difference between the gas and wall temperature, and C is
an empirical constant of value 1.5 for a horizontal surface and 1.3 for a vertical surface.



Radiative Transport Equation

Radiative Transport Equation (RTE) for a non-scattering grey gas

s- I (x,8) =K(X) [lp(X) —1(X,S)]

1(X,9) Radiant Intensity

Ip(X) Radiant energy source term
S unit normal direction vector
K(X) Absorption Coefficient

o Stefan-Boltzmann Constant

Radiant heat flux vector g, defined

gr(X) :/ sl(x,s) ds

Radiative loss term in the energy equation is

_0-qr(x) = K(x) [UX) — 40T (XY U(x):/l(x,s)ds

Net radiant energy flux gained by a grid cell is the difference between that which is ab-
sorbed and that which is emitted.



Source Terms

K is the effective absorption coefficient assuming soot is the dominant absorber/emitter,
with CO,, H,0O and Fuel playing smaller role. RadCal, a computer program designed to
compute absorption coefficients for soot and various gases, generates a table for K as a
function of temperature and mixture fraction.

Source term must be modeled near flame because of lack of resolution.

(2)

K — KO'T4/T[ Outside flame zone
= x,q"/4m Inside flame zone

Here, " is the chemical heat release rate per unit volume and ¥, is the local fraction of
that energy emitted as thermal radiation. Note the difference between the prescription of
a local X, and the resulting global equivalent. For a small fire (D < 1 m), the local ¥; is
approximately equal to its global counterpart. However, as the fire increases in size, the
global value will typically decrease due to a net re-absorption of the thermal radiation by
the increasing smoke mantle.



Flux Methods: Finite Volume, Discrete Ordinates, etc.

Return to original transport equation
S-0I(x,5) =K(X) [lp(X) —1(X,S)]

Integrate over grid cell ijk and an angle &s, apply divergence theorem, and discretize:

6
z An Irln (Sl -nm) 6§ = Kijjk [Ib,ijk_ Iiljk] Vijk6$|

m=1

Radiant Intensity in direction |
Radiant Intensity at cell face m

l,ijk Radiant source term

5s Solid angle corresponding to direction |
Vijk Volume of cell ijk

Am Area of cell face m

Reference: Kim and Huh, “Assessment of the Finite Volume Method....” Numerical Heat
Transfer, Part B, 35:85-112 (1999).



Strengths of Finite Volume Method
Closer to real physics; less approximation

Good in optically-thin limit

Weaknesses of Finite Volume Method
Requires discretization over many angles to rid grid/angular dependency

Can be expensive






Heat of Vaporization
Mass burning rate per unit area approximately given by

N/
iy — dnet
L
where @/, is the net heat flux into the fuel and L is the Heat of Vaporization.

Quintiere’s “Principles of Fire Behavior” suggests

Liquids < 1000 kJ/kg
Thermoplastics 1000 — 3000 kJ/kg
Char Formers 2000 — 6000 kJ/kg


















Prescribing Thermal Boundary Conditions

Thermally-thick solid:

e Thermal Diffusivity, a = k/(pc), ALPHA(m?/s)

e Thermal Conductivity, k, KS (W/m-K)

e Thickness, d DELTA(m)
Thermally-thin sheet:

e Thermal Capacitance, cdp C DELTARHQ (kJ/kg-K x m x kg/m3=kJ/m?/K)
For either Thermally-thick or thin, one can set

e EMISSIVITY , 1 by default.

e TMPIGN ignition temperature (C)

e BACKING='INSULATED’, no heat transfer off the back side of the surface liner.



Prescribing the Fire
HRRPUAHeat Release Rate Per Unit Area (KW/m?).

HEATOFVAPORIZATION (kJ/kg). This is an alternative to HRRPUAThis is the amount
of energy required to vaporize a solid or liquid fuel once it has reached its ignition
temperature TMPIGN If it is desired that the burning rate of the fuel be dependent
on heat feedback from the fire, use this parameter rather than HRRPUA

DENSITY or SURFACEDENSITY The density (kg/m3) or surface density (kg/m?) of the
fuel. This parameter is only needed if it is desired that the fuel eventually burn away.
Only one of these parameters ought to be prescribed. If neither is prescribed, the
fuel will never be exhausted. Note that if SURFACEDENSITY is prescribed, when
the fuel is exhausted, the underlying solid will remain intact, whereas if DENSITY is
prescribed, the underlying solid will be removed from the calculation.

HEATOF. COMBUSTIONKkJ/kg) Optional parameter that is needed only if a HEATOF VAPORIZATIC
has been specified and the heat of combustion of the material differs from that spec-
ified by the governing REACTION



Following are a few examples of SURFIlines. These and several others are found in the
DATABASHIle.

&SURF ID = 'CONCRETE’
FYI = 'Thermally-thick material’
ALPHA = 5.7E-7
KS = 1.0
DELTA =02/
&SURF ID = 'UPHOLSTERY’
FYI = 'Fleischmann and Chen, 100% acrylic’
C DELTA_RHO = 1.29
BACKING = 'INSULATED’
TMPIGN = 280.
DENSITY = 20.0
HEAT _OF VAPORIZATION=2500. /
&SURF ID = 'SHEET METAL’
FYI "Thermally-thin material’

C_DELTA RHO = 4.7 /



Prescribing REACtion Parameters

CxHyO; + Vo, O2 — Ve, CO2 4 VH,0 H2O + Vo CO-+ Vot SO0t
ID A character string naming the reaction.

NUO2, NUH20, NUFUEL, NU CO2 ldeal stoichiometric coefficients for the reaction of
a hydrocarbon fuel. Default: propane.

MWFUEL Molecular weight of the fuel (g/mol).
SOOTYIELD The fraction of fuel mass converted into smoke particulate.

CQYIELD The fraction of fuel mass converted into carbon monoxide. Normally, this pa-
rameter need not be set, because by default, the COQYIELD, yco, is linked to the
SOOTYIELD, ys, via the correlation (Koyli and Faeth)

Mc X

MtV

Yco = 0.0014+ 0.37ys

EPUMOZ2Energy Per Unit Mass Oxygen, AHop, (kJ/kg). The amount of energy released
per unit mass of oxygen consumed. (Default 13,100 kJ/kg). Note that the heat of
combustion is assumed to be

V02 |\/|Q2

AH =
Vi Ms

AHg,



RADIATIVE _FRACTION The fraction of energy released from the flame as thermal radi-
ation. Recall source term in Radiation Transport Equation:

e — KoT4/m Outside flame zone
b= Xr ¢ /41 Inside flame zone

A few sample REACIines are given here. More can be found in the DATABASHile.

&REAC ID="METHANE’
MW _FUEL=16
NU_02=2.
NU_CO2=1.
NU_H20=2.
RADIATIVE_FRACTION=0.15
SOOT_YIELD=0.01 /

&REAC ID="WOOQOD’

SOOT _YIELD = 0.01
NU_O2 = 3.7
NU_CO2 = 3.4
NU_H20 = 3.1
MW _FUEL = 87.
EPUMO2 = 8850. /



Flame Spread Example

&HEAD CHID="wall', TITLE="Wall Fire’ /

&GRID IBAR=20,JBAR=5,KBAR=20 /

&PDIM XBARO0=-1.00,XBAR=1.00,YBARO0=0.00,YBAR=0.50,ZBAR=2.00 /
&TIME TWFIN=60. /

&SURF ID="burner,HRRPUA=676. /

&SURF ID="WALL",C_DELTA_RHO0O=0.80,TMPIGN=200.,HRRPUA=300. /
&OBST XB=-.14,0.14,0.00,0.28,0.00,0.03,SURF_IDS="burner’INERT'INERT" /
&VENT CB='XBAR’ ,SURF_ID="OPEN’ /

&VENT CB='XBARO0’,SURF_ID="OPEN’ /

&VENT CB='YBAR’ ,SURF_ID="OPEN’ /

&VENT CB=YBARO',SURF_ID="WALL’ /

&VENT CB="2BAR’ ,SURF_ID="OPEN’ /

&BNDF QUANTITY="RADIATIVE_FLUX' /

&BNDF QUANTITY="CONVECTIVE_FLUX’ /

&BNDF QUANTITY="BURNING_RATE’ /

&BNDF QUANTITY="WALL_TEMPERATURE’ /



Enclry

100

Lot
FLIRE

BO.0

50.0
40.0
30.0
200

10.0




Example: Burning Boxes









&SURF 1D = 'PLASTIC A’

HRRPUA = 420.
RAMP_Q = 'GAP’
C_DELTA RHO = 1.0

TMPIGN 70. /

&RAMP ID="GAP’,T= 0.0,F=0.0
&RAMP ID="GAP’, T= 1.0,F=0.6
&RAMP ID="GAP’,T= 30.0,F=0.2
&RAMP ID='"GAP’, T= 80.0,F=1.6
&RAMP ID="GAP’,T= 100.0,F=1.0
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Sprinkler Activation

Link temperature estimated from the differential equation

dT, +/|u C C
AL Ti—Tn) — oo

dt ~ RTI )= rr ¢ RTI
T link temperature
Ty gas temperature near link
Tm mount temperature (usually assumed ambient)
| gas speed near link
RTI Response Time Index
C Conduction or “C-Factor”
C water cooling coefficient

B water volume fraction

B lul



Droplet Sizes

Once activation is predicted, a sampled set of water droplets are tracked from the sprinkler
to either the floor or the burning commodity. In order to compute the droplet trajectories,
the initial size and velocity of each droplet must be prescribed. This is done in terms of
random distributions. The initial droplet size distribution of the sprinkler spray is expressed
in terms of its Cumulative Volume Fraction (CVF). For droplets, Chan at FM suggests a
combination of the Rosin-Rammler distribution with a log-normal distribution

d /dm
F(d) = %/O sg€ = dd (d<dp)

1 e 0693(3) (dm < d)
where dp, is the median droplet diameter (i.e. half the mass is carried by droplets dy, or

smaller in diameter), and y and o are empirical constants equal to about 2.4 and 0.58,
respectively.

A Probability Density Function (PDF) for the droplet diameter is defined

F/ d/
d3 // drs dd/
Droplet diameters are randomly selected by equating the Cumulative Number Fraction of
the droplet distribution with a uniformly distributed random variable U

:/Od f(d')dd
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Rosin-Rammler/Log Normal Distribution
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Droplet Trajectory

External force term f in the momentum equation is

¢ _ 13 PCyAg(U — Ug)|u — ug|

2 \Y
Cq Drag Coefficient
Aq Cross sectional area of the droplet
u Gas velocity
Ug Droplet velocity
V Volume of grid cell
24/Re Re <1
Co = 24(1+0.15Re°-687) /Re 1< Re < 1000
0.44 1000< Re
—ul2r
Re — Plug—ul2rg

U

Droplet trajectory governed by

d 1
a(mdud) = mdg_épCdAd(U—Ud”U—Ud‘

where my is the mass of the droplet.



When a water droplet hits a solid horizontal surface, it is assigned a random horizontal
direction and moves at a fixed velocity until it reaches the edge, at which point it drops

straight down at a constant speed. This terminal velocity has been measured to be roughly
0.5 m/s.



Droplet Evaporation

Mass loss rate of droplet given by empirical relation

dd—r?j = —2Tlrg Sh pD (Yd —Yg)
my Mass of a droplet
rq Radius of a droplet
p Density of air
D Diffusivity of water vapor into air
Sh Sherwood number Sh = 2+ 0.6 Re: Scs
Re Reynolds number based on droplet velocity and drop diameter
Sc Schmidt number
Y4 Mass fraction of water vapor at droplet surface

Yg Mass fraction of water vapor in the air



Mole fraction of water vapor at droplet surface given by Clausius-Clapeyron equation

Xdzexp[hVMW (3—3)] Y= Xa

K, T Tqg Xd(l— Ma/MW) + IVla/MW
Xd Mole fraction of water vapor at droplet surface

Tq Droplet temperature

Ty Water boiling temperature

hy Heat of vaporization of water

My Molecular weight of water vapor

Mg Molecular weight of air

R Gas constant

Energy balance for droplet

dTqy dmy

My G 5 = Adhg (Tg—Ta) — gt hy
Cw Specific heat of water
Ty Gas temperature
hy Heat transfer coefficient, Nuk,/2rq
Nu Nusselt number, 2+ 0.6 Re'/? prt/3
Pr Prandtl number of air (0.7)
Ka Thermal conductivity of air

A4 Surface area of droplet



Radiation Absorption

The attenuation of thermal radiation by water droplets especially important for water mist
systems. Water droplets attenuate thermal radiation through a combination of scattering
and absorption, typically represented by a wavelength dependent complex number, n+ ik,
called the refractive index. In this expression nis the refractive factor of the index, used in

Snell’'s Law to determine the bending of light at a material interface, and k is the extinction
coefficient.
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Simplified theory approximates scattering and absorption processes as a function of the
droplet size and liquid water concentration in the hot gas:

I_ _ e—BKW L/4rqpu
lo
lo incoming radiant intensity
I outgoing radiant intensity
K wavelength-averaged, radius-dependent extinction coefficient
W water mass per unit volume gas
L pathlength
rg droplet radius
Pw density of water

An extinction coefficient K is calculated as a function of droplet radius. K is the sum of
scattering, Ks, and absorption, K, coefficients, integrated over the wavelengths of interest:

1 coj2a(n—1)) .

an—1) (1— 20(n—1) —SIﬂ(Z(X(ﬂ—l)))]

2 (exp(—4ank) + (exp(—4ank) — 1) /(4ank)) pAL
4ank ’ A




Extinguishment

Extinguishment of the fire is the single most difficult component of the numerical model.
To date, most of the work in this area has been performed at Factory Mutual. An analysis
by Yu yields an expression for the total heat release rate from a rack storage fire after
sprinkler activation

Q= Qe ™%
where Qg is the total heat release rate at the time of application ty, and k is a fuel-
dependent constant that for the FMRC Standard Plastic commodity is given as

k=0.176m,—0.0131 s !

The quantity (), is the flow rate of water impinging on the box tops, divided by the area of
exposed surface (top and sides). It is expressed in units of kg/m?/s.

Locally, it is assumed
G (t) = i 1) & 1O

q7 o(t) Heat Release Rate Per Unit Area (no water)
K

(1 an, s
m(! Water Mass Per Unit Area (kg/m?)



Sprinkler Implementation (FDS v2)
Sprinklers are invoked in the input file with a line:

&MISC ...,.DATABASE DIRECTORY="c:\nist\fds\database2\" /

&SPRK XYZ=2.6,4.3,1.5,MAKE="Splash-2000" /

where Splash-2000 is the name of a particular sprinkler whose activation and spray
characteristics are contained in a separate file. Usually this file is stored in the same
directory as the database2.data file.

Sprinkler data file (for example Splash-2000.spk ) has the following format:



MANUFACTURER

Acme

MODEL

Splash-2000
OPERATING_PRESSURE
0.48

K-FACTOR

79.

RTI

110.

C-FACTOR

0.

ACTIVATION _TEMPERATURE
74.

OFFSET_DISTANCE

0.20

SIZE _DISTRIBUTION

1

800 2.43 0.6

VELOCITY

2

61,36
6.3,6.4,6.5,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.5,6.4,...

FLUX

2

61,36
11.9,13.0,13.5,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16 4,...



